Well‐Posedness in Gevrey Function Space for 3D Prandtl Equations without Structural Assumption

نویسندگان

چکیده

We establish the well-posedness in Gevrey function space with optimal class of regularity 2 for three-dimensional Prandtl system without any structural assumption. The proof combines a novel way new cancellation some old ideas to overcome difficulty loss derivatives system. This shows that instabilities leading ill-posedness are not worse than two-dimensional ones. © 2021 Wiley Periodicals LLC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Gevrey Regularity for the B Enard Convection in Porous Medium with Zero Darcy-prandtl Number

In this paper, we prove the existence and uniqueness for the three-dimensional B enard convection model in porous medium with zero Darcy-Prandtl number using the Galerkin procedure. In addition, we show that the solutions to this problem are analytic in time with values in a Gevrey class regularity. We also prove that the solution of the standard Galerkin method converges exponentially fast, in...

متن کامل

Wellposedness of the tornado-hurricane equations

We prove local-in-time existence of a unique mild solution for the tornado-hurricane equations in a Hilbert space setting. The wellposedness is shown simultaneously in a halfspace, a layer, and a cylinder and for various types of boundary conditions which admit discontinuities at the edges of the cylinder. By an approach based on symmetric forms we first prove maximal regularity for a linearize...

متن کامل

Some Local Wellposedness Results for Nonlinear Schrödinger Equations below L

In this paper we prove some local (in time) wellposedness results for non-linear Schrödinger equations ut − i∆u = N (u, u), u(0) = u0 with rough data, that is, the initial value u0 belongs to some Sobolev space of negative index. We obtain positive results for the following nonlinearities and data:

متن کامل

The Gevrey hypoellipticity for a class of kinetic equations

In this paper, we study the Gevrey regularity of weak solutions for a class of linear and semi-linear kinetic equations, which are the linear model of spatially inhomogeneous Boltzmann equations without an angular cutoff.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2021

ISSN: ['1097-0312', '0010-3640']

DOI: https://doi.org/10.1002/cpa.21989